COAL ENGINEERING ›› 2014, Vol. 46 ›› Issue (12): 84-86.doi: 10.11799/ce201412028
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
Abstract:
The first, a BP net is built and trained with six input variables of burial depth of coal seam coal seam thickness gas content the distance of coal working face and adjacent coal seam daily advance distance average daily output and the absolute Gas emission as output variables of the neural network model. Then the Monte Carlo method is tried to predict the development trends and the input variables change with time behavior simulation by random sampling of 6 groups input variables, the simulation results are used as the input layer node, then the output value is the forecast of next production cycle Gas emission. The results showed that this prediction method has a high precision and this prediction method can be a good guide for the production of mine Gas control work.
Key words: BP neural network, Monte Carlo method, The Prediction of Gas emission
CLC Number:
TD712
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.coale.com.cn/EN/10.11799/ce201412028
http://www.coale.com.cn/EN/Y2014/V46/I12/84
[1] 郑永坤,罗新荣,吴电军等.分源法预测回采工作面瓦斯涌出量[J].能源技术与管理,2009(6):66-68. [2] 王景山,朱炎铭,宋金栋等.矿井瓦斯涌出量预测方法综述[J].能源技术与管理.2008,(4):49-51. [3] 王红刚,吴奉亮,常心坦.基于蒙特卡洛方法的瓦斯测值分析模型[J].工矿自动化,2009(4):52-54. [4] 王忠法.应用蒙特卡洛方法进行预测的探讨[J].预测,1990,9(5)51~54. [5] 陈勇,孔峰.BP神经网络预测全国私人汽车拥有量[J].计算技术与自动化,2003,22(3):67-70. [6] 王旭,王宏,王文辉.人工神经元网络原理与应用[M].沈阳:东北大学出版社,2007:58-59. [7] 徐钟济。蒙特卡罗方法[M].上海:上海科学技术出版社,1985 [8] 王旭,王宏,王文辉.人工神经元网络原理与应用[M].东北大学出版社,2007. [9] 王生全.采煤工作面瓦斯涌出量的建模预测[J].东北煤炭技术,1997(2):38-41. [10] 郭睿.基于BP神经网络的天津港吞吐量预测研究[D].天津大学,2011. [11] 朱海宾.蒙特卡洛模型在矿产资源量预测中的应用[J].地质找矿论,2010.25(1):50-54